Bioassessment in Deer Creek: Long-term and Case-specific Variation using an IBI and a Multivariate Approach

Andy Bell & Jeff Lauder Sierra Streams Institute Nevada City, CA

Deer Creek Watershed

Step 1: Assess biological condition

Step 2: What changed and why?

Index of Biotic Integrity

 The composition of the benthic macroinvertebrate assemblages provide a direct measure of the integrity of the stream's ecological condition

• Family-level IBI

- Utilizes citizen science data
- Affordable for non-profit watershed groups
- Facilitates communication to the public about ecological conditions
- Macroinvertebrate families have varying responses to anthropogenic disturbance gradients

The search for the reference condition.....

- Streams within a 25 mile buffer of the Deer Creek watershed
- Watershed area & elevation
- Quantitative GIS land cover analysis
 - Urban Development (<5% of watershed)
 - Impervious Surfaces (<10% of watershed)
 - Density of Roads (<2km roads/km²)
 - Riparian Development (2km by 200m upstream)
 - Ground truthing
 - Field visits, water quality, physical habitat assessment, site access

Martin Creek Area: 3.59595 Elevation: 621 % Urban: 0 % Non urban/agr: 100 % Impervious: 7.01579/

> Area: 6.87714 Elevation: 630 % Urban: 5.28588 % Non urban/agr: 94.7141 % Impervious: 10.334 % Urban: 0

Galen Creek

New York Creek Area: 6.86475 Elevation: 725 % Urban: 1.33648 % Non urban/agr: 98.6635 % Impervious: 6.01652

Dry Creek Area: 192.806 Elevation: 276 % Urban: 2.25308 % Non urban/agr: 97.6736 % Impervious: 6.9688

> D Rattlesnake Creek Area: 11.246 Elevation: 531 % Urban: 30.402 % Non urban/agr: 69.5979 % Impervious: 29.5333

E Wolf Creek Area: 46.7768 Elevation: 562 % Urban: 32.5251 % Non urban/agr: 67.4749 % Impervious: 33.57

F

Wolf Creek Area: 64.9414 Elevation: 512 % Urban: 26.2834 % Non urban/agr: 73.7166 % Impervious: 27.7254

French Creek Area: 90.9947 Elevation: 594 % Urban: 0.878408 % Non urban/agr: 99.1216 % Impervious: 4.05647

% Non urban/agr: 100

% Impervious: 5.58962

Area: 29.0781 Elevation: 1166 % Urban: 0 % Non urban/agr: 100 % Impervious: 6.50135

Fall Creek

Lost Creek Area: 28.9803 Elevation: 1178 % Urban: 0.518811 % Non urban/agr: 99.4812 % Impervious: 6.14869 PAULEY CREEK Area: 62.4886 Elevation: 968 % Urban: 0 % Non urban/agr: 99.9481 % Impervious: 0.689844 A Oregon Creek Area: 27.8392 Elevation: 1137 % Urban: 3.36629 % Non urban/agr: 96.6337 % Impervious: 5.68446

- B Oregon Creek 0.85 mi d/s Gale Cr. Area: 41.6203 Elevation: 1038.319946 % Urban: 2.43402 % Non urban/agr: 97.566 % Impervious: 5.43976
- C Oregon Creek Area: 59.9604 Elevation: 659 % Urban: 1.70753 % Non urban/agr: 98.2925 % Impervious: 4.93757

Yuba River Area: 371.118 Elevation: 630 % Urban: 0.763992 % Non urban/agr: 99.0611 % Impervious: 3.50526

Rock Creek 5.9 mi above Yuba River Area: 12.0732 Elevation: 876.390015 % Urban: 2.19011 % Non urban/agr: 97.8099 % Impervious: 10.5863

> Greenhorn Creek Area: 95.2925 Elevation: 678 % Urban: 4.91576 % Non urban/agr: 95.0842 % Impervious: 9.20148

Boardman Canal Area: 19.0545 Elevation: 966 % Urban: 12.2591 % Non urban/agr: 87.7409 % Impervious: 16.4707

NORTH FORK AMERICAN RIVER Area: 355.775 Elevation: 620 % Urban: 0.781716 % Non urban/agr: 98.6916 % Impervious: 1.2502

	R	Deer Creek		
	Oregon Creek: Tippe Canoe	Oregon Creek: Camptonville	Dry Creek	
Watershed Area (sq. mi.)	12.40	23.06	72.67	84.50
Elevation (ft)	3,678	2,194	950	4,800-300
% Urban	2.92	1.71	2.31	10.04
% Impervious	6.01	4.93	7.05	14.51
Road Density (km/km ²)	2.00	2.12	2.24	3.31
Dams	-		1	3

Metrics

- Richness Measures
- Composition Measures
- Tolerance Measures
- Trophic or functional feeding group

Criteria for Candidate Metrics

- Sufficient range for scoring
- Responsiveness to disturbance gradients
- Limited seasonality
- Minimal correlation with other responsive metrics

Scoring System

- Establish metric breaks using reference conditions
- Apply numerical value to metrics
- Add metrics together to get IBI score

IBI Development Details

- 48 candidate metrics
- BMIs ID'ed to family by volunteers (with QA/QC)
- Disturbance stressor gradients:
 - % of watershed urban development
 - % of riparian area (2km x 200m upstream) impervious surfaces
 - Dissolved Oxygen (mg/L)
 - pH
 - <mark>Tur</mark>bidity (ntu)
 - Nitrate (mg/L)

Richness Measures

Total Taxa	Trichoptera Taxa
Insect Taxa	Diptera Taxa
Non-insect Taxa	Coleoptera Taxa
Ephemeroptera Taxa	Plecoptera& Trichoptera Taxa
Plecoptera Taxa	EPT Taxa

Tolerance Measures

% Tolerant	Intolerant Taxa
% Intolerant	Beck's Biotic Index
Tolerant Taxa	Hilsenhoff's Biotic Index

Trophic or Functional Feeding Group Measures

% Collector/gatherers	Collector/gatherers Taxa
% Filterers	Filterer Taxa
% Predators	Predator Taxa
% Scrapers	Scraper Taxa
% Shredders	Shredder Taxa

Insufficient range for scoring

Unresponsive to disturbance

Obvious seasonality

Correlated with other metrics

Composition Measures

% Non-insect
% EPT
% EPT excluding Baetidae
% Ephemeroptera
% Ephemeroptera (w/oBaetidae)
% Plecoptera
% Trichoptera
% Plecoptera & Trichoptera
% Coleoptera
% Odonata
% Diptera

% Chironomidae
% Amphipoda
% Gastropoda
% Isopoda
% Oligochaeta
Shannon-Wiener Index
Margaleff's Index
Simpson's Index
% Dominant Taxon
% 3 Most Dominant Taxa

Metric Scoring Number of Plecoptera Taxa ß Scores: # of Plecoptera Taxa 5 (Healthy) 1 (Impaired) ∞ 2 Total IBI score out of 40 20 60 10 30 50 40 Rank

- Development set (2009 & 2010, June and October)
- Reference Sites (2012, June and October)

Reference IBI Score

18

Lower

16.6

Full Dataset Distribution of IBI Scores

- Upper Watershed (Site 1) Urban development = 2.29%
- Lower Watershed (Site 10) Urban development = 10.04%

Deer Creek Monitoring Sites

Lake Wildwood Waste Water Treatment Plant (LWW WWTP)

- Recreational dam in lower Deer Creek watershed
- Immediately downstream of dam is WWTP
- Government mandate in 2007
 - Upgrade to fully denitrify wastewater, produce more consistent, contained flows

IBI Scores below treatment plant:

June

P=0.5058

October

P=0.04972

Objectives

 Dynamics of community-disturbance interactions

Before and After WWTP upgrade

- Changes in community.
- Changes in disturbance variable significance.

Methods

Community-Environment

Interactions

Non-metric Multidimensional Scaling (NMS)

Environmental significance at site(s) of interest

NMS

Pros

- Non-parametric technique
- Unlike PCA, does not depend on linear relationships among variables.
- Unlike CCA, does not depend on linear combinations of variables for environmental correlations.

Cons

Not a "constrained"
ordination; environmental
correlations may require
more interpretation.

McCune & Grace (2002)

Overall Site Summary

LWW WWTP

Significant Variables (r>0.20) along Axis 3 in overall NMS:

Correlations	Axis 3 variance
Phosphate	-0.558
Nitrate	-0.451
рН	-0.652
Conductivity	-0.843
Water Temperature	-0.571
Shed Area Above	-0.789
Urban Cover	-0.413
Impervious Cover	-0.486

LWW WWTP

Did Nitrate inputs actually decrease?
What other water quality parameters changed?

	Distance I and the second	All II
Parameter	W	р
Phosphate	286.5	0.4108
Nitrate	421.5	<0.01
рН	243	0.8819
Conductivity	266.5	0.7148
Turbidity	210.5	0.3729
D.O.	195	0.2131
Water Temp.	292.5	0.3373

LWW WWTP

Did Nitrate inputs actually decrease?
What other water quality parameters changed?

Street Provide and the	all a li
W	р
286.5	0.4108
421.5	<0.01
243	0.8819
266.5	0.7148
210.5	0.3729
195	0.2131
292.5	0.3373
	W 286.5 421.5 243 266.5 210.5 195 292.5

Reduced NO₃ from μ = 1.085 mg/L to 0.67 mg/L (SE \pm 0.18, z= -440.5, p= 0.03)

June

P=0.5058

October

P=0.04972

LWW WWTP MRPP of BMI Composition

MRPP Statistics	т	А	р	MRPP Statistics	т	А	р
Before	-2.21	0.12	0.02	After	0.32	-0.013	0.59
8 vs 9	-2.32	0.13	0.02	8 vs 9	-0.03	0.001	0.44
8 vs 10	-1.74	0.11	0.06	8 vs 10	-0.26	0.01	0.35
9 vs 10	-0.77	0.04	0.21	9 vs 10	1.2	-0.06	0.91

 Stress: 13.19
 Instability: 0.00

 R²: 0.769
 Axis 3 R²: 0.330

Stress: 13 R ² : 0.769	.19 Instabi Axis 3	lity: 0.00 R ² : 0.211
Correlations	r	τ
Phosphate	-0.723	-0.639
Nitrate	-0.740	-0.547
рН	0.369	0.326
Conductivity	-0.726	-0.484
Dissolved Oxygen	-0.289	-0.284

WWTP After

Stress: 13.19 R²: 0.769 Instability: 0.00 Axis 3 R²: 0.330

Correlations	r	τ
Phosphate	-0.40	-0.26
Nitrate	-0.44	-0.33
Conductivity	-0.57	-0.29
Turbidity	0.37	0.33
Water		
Temperature	0.20	0.03

Stress: 13 R ² : 0.769	.19 Instabi Axis 3	Instability: 0.00 Axis 3 R ² : 0.211		
Correlations	r	τ		
Phosphate	-0.723	-0.639		
Nitrate	-0.740	-0.547		
рН	0.369	0.326		
Conductivity	-0.726	-0.484		
Dissolved Oxygen	-0.289	-0.284		

WWTP After

Indicator Species Analysis

Before

Coleoptera, Dytiscidae "Water Tiger", Diving Beetle IV = 20.0, p = 0.0340 Tolerance Value 5, Predator

After

Diptera, Tipulidae Crane Flies IV = 32.9, p = 0.0382 Tolerance Value 3, Shredder/Collector

Coleoptera, Dytiscidae

Coleoptera, Dytiscidae

Model for all observations

Diptera, Tipulidae

Diptera, Tipulidae

Model for all observations

Conclusions

- Nitrate load decreased below the WWTP
- Community composition changed downstream of the WWTP
 - IBI showed increase in score between Oct. before and after at site 8.
 - Multivariate analysis did show seasonality, and that site 8 changed the most significantly.

IBI / Multivariate Methods

	IBI	Multivariate
Change in community	\checkmark	\checkmark
Change in health	\checkmark	
Environmental Correlations		\checkmark
Changes through time	\checkmark	+/-
Clear dissemination to Stakeholders	\checkmark	

Note: Not a comparison! Simply shows that both methods should be used together.

But what does this all mean?

- Citizen-science data can successfully be used for robust bioassessments.
- Multi-metric methods can be amenable to smaller watersheds with varied disturbances conditionally.
- Family level IBI is sensitive enough for analysis.
- The "causal analysis" can also be used as a validation step for the IBI scores when using smaller datasets.

Future Directions

- Collect more data points at the reference sites
- Carry out more inclusive multivariate analysis including reference sites and IBI scores for more direct validation.
- Expand dataset to include citizen science data from other watersheds

Andy Bell: <u>Andy@sierrastreamsinstitute.org</u> Jeff Lauder: <u>Jeff@sierrastreamsinstitute.org</u> www.sierrastreamsinstitute.org

