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Species with extensive geographical ranges pose special challenges to assessing drivers of wildlife
disease, necessitating collaborative and large-scale analyses. The imperilled foothill yellow-legged
frog (Rana boylii) inhabits a wide geographical range and variable conditions in rivers of California
and Oregon (USA), and is considered threatened by the pathogen Batrachochytrium dendrobatidis
(Bd). To assess drivers of Bd infections over time and space, we compiled over 2000 datapoints
from R. boylii museum specimens (collected 1897–2005) and field samples (2005–2021) spanning 9°
of latitude. We observed a south-to-north spread of Bd detections beginning in the 1940s and
increase in prevalence from the 1940s to 1970s, coinciding with extirpation from southern latitudes.
We detected eight high-prevalence geographical clusters through time that span the species’
geographical range. Field-sampled male R. boylii exhibited the highest prevalence, and juveniles
sampled in autumn exhibited the highest loads. Bd infection risk was highest in lower elevation
rain-dominated watersheds, and with cool temperatures and low stream-flow conditions at the end
of the dry season. Through a holistic assessment of relationships between infection risk,
geographical context and time, we identify the locations and time periods where Bd mitigation and
monitoring will be critical for conservation of this imperilled species.
70
1. Introduction
Threatened species with large geographical ranges often require unique, regional conservation strategies
to combat stressors such as infectious disease. Pathogen surveys and reporting have become standard for
North American wildlife diseases [1,2]; however, relative risk across a landscape and among populations
within species remains difficult to anticipate, especially when data are collected by separate research
groups [3]. Central reporting databases [4], synthetic analyses and retrospective surveys can help
assess disease threats and identify high-risk populations.

Among the most significant wildlife diseases, amphibian chytridiomycosis caused by the fungal
pathogen Batrachochytrium dendrobatidis (Bd) has contributed to declines of hundreds of species
worldwide [5]; but see [6]. In North America, notable Bd-associated declines have occurred across the
west including the southern Rocky Mountains [7,8], Arizona and New Mexico [9,10], Nevada [11]
and California [12–14]. In several of these cases, infection outcomes varied widely among populations
due to host-related and environmental factors including genetics, prior Bd exposure and abiotic
conditions [15–17].

For the stream-dwelling foothill yellow-legged frog, Rana boylii, Bd’s role in the species’ changing
abundance across its endemic range (California and Oregon, USA) is not well-understood. The species
has declined for at least the last half-century, with extirpations reported from xeric lower latitudes
[18], at the wetter northern range limit [19] and downstream of large dams range-wide [20]. A mix of
abiotic and biotic factors influence Bd infection risk and disease dynamics in many systems, including
elevation, latitude, climate, habitat quality and host characteristics [21]. The relative importance of
these factors remains unclear in rivers with winter flood/summer drought flow regimes typical across
R. boylii’s geographical range. Bd is considered a significant potential threat to R. boylii [22] because it
is implicated in the species’ disappearance from rivers of California’s South Coast [23] and in recent
autumn die-offs of R. boylii in Central Coast streams [24,25]. A large-scale assessment of Bd infections
is needed to clarify how infections relate to historical declines in some regions’ rivers and persistence
in others, identify clusters of increased infection risk across the species’ range, and evaluate how
infection incidence and severity changes with the seasonality of the Mediterranean climate and across
the diverse ecoregions that R. boylii occupies.

Here, we leverage data from over 2000 field and museum samples covering 124 years to synthesize
knowledge and evaluate patterns of Bd infections in R. boylii. We use a combination of modelling
approaches and spatial scan statistics to ask: (i) how are Bd detections in R. boylii are distributed over
space and time, (ii) whether watersheds with high versus low Bd infection risk clustered historically
and today, and (iii) how Bd infections are related to biotic and abiotic factors. Our results highlight
priority populations for Bd mitigation, regions that are data-deficient and warrant further sampling
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Figure 1. Distribution of R. boylii samples assayed for Bd infection. Diamonds show museum samples (collected 1897–2005), circles
show field samples (2005–2021). Filled symbols indicate Bd-positive samples. (a) Sampling locations across California and Oregon,
USA. Symbols overlap in some localities; see inset barplots for sample sizes. Rana boylii clades are outlined and labelled, with
California Endangered Species Act status abbreviated in parentheses: SSC = Species of Special Concern, TH = Threatened, EN =
Endangered. (b) Spatio-temporal spread of Bd detections. Symbol size indicates sample size at the HUC-12 (sub-watershed)
level. Generalized additive model (GAM) of latitude∼capture year + sample size in Bd-positive samples is shown with black
curved line (R2 = 0.133). Photo of R. boylii in Napa County, CA by Marina De León.
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and monitoring, and remaining gaps in our knowledge about Bd susceptibility in R. boylii. Our study
serves as a resource for wildlife managers implementing disease mitigation and species recovery
projects, such as re-introductions, and as an example of collaborative research to address conservation
challenges in wide-ranging imperilled species.
2. Methods
2.1. Study species
Rana boylii is a stream-dwelling frog (38–81 mm snout–vent length, SVL) [26] whose life cycle timing and
breeding migrations between small tributaries and larger main-stem channels occur in synchrony with
the winter flood/summer drought flow regime typical of Mediterranean climate rivers. During the
transition from high to low flows, adults congregate at lek sites where males reside for weeks to call
from underwater, and females visit long enough to mate and attach eggs to rocks in flow-protected
locations. Tadpoles reach metamorphosis three–four months later, well before the return of high-flow
disturbance the next winter.

These frogs were once common in the rivers and streams flowing through a variety of biomes
including moist coniferous forests, oak-savannahs, chaparral and deserts in California and Oregon.
Historically, R. boylii ranged across at least 12° of latitude, from the Willamette drainage in Oregon to
at least the San Gabriel drainage in southern California [26,27], and from sea level to approximately
1500 m [28]. The species tolerates a wide range of conditions, all of which can influence population
size and dynamics, including: precipitation that ranges south-to-north from less than 50 to greater
than 300 cm yr−1 [29]; seasonally variable stream-flow [30]; primary productivity gradients [31]; and
thermal regime gradients from rain-dominated coastal watersheds to inland montane (Sierran)
snowmelt-driven watersheds [32]. Rana boylii comprises six deeply divergent clades that vary in
demographic histories, genetic diversity, and California and federal Endangered Species Act
protections [33–36] (figure 1a).
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2.2. Data compilation and visualization

To test for the effects of space, time and abiotic and biotic factors on Bd infections in R. boylii, we gathered
georeferenced Bd data from skin swabs and/or tissues collected from museum specimens or field-
sampled frogs from 22 sources (electronic supplementary material, tables S1 and S2). Skin swabs were
collected and DNA was extracted from swabs according to a standard protocol [37] with the exception
of one museum study that used a DNA extraction method for formalin-fixed specimens [23]. Extracts
were analysed with either endpoint or quantitative PCR (qPCR) to detect Bd DNA [38]. Two field-
collected samples [39] were analysed using histological examination of skin at the USGS National
Wildlife Health Center (Madison, WI). Museum samples were assessed using histology [40], qPCR
[12], or a combination of these two techniques [23,24]. Bd assay results and detection method, frog life
stage, sex and size were included when available (see electronic supplementary material, methods for
additional details on data gathering and quality control). The final dataset included 2145 samples,
comprising 461 museum samples of post-metamorphic frogs collected 1897–2005 and 1684 field
samples (larval and post-metamorphic frogs) collected 2005–2021. A subset of field-sampled frogs (n =
86) were passive integrated transponder (PIT)-tagged and recaptured; a single sample per year was
randomly selected for each resampled frog for inclusion in analyses resulting in 2074 total samples
and 1613 field samples after filtering (electronic supplementary material, methods). Sampling areas
included streams and rivers in 173 sub-watersheds (12-digit USGS hydrologic unit code, HUC-12)
across California and Oregon; the diversity of the watersheds is manifest in their spanning the
ancestral homelands of at least 41 Indigenous Peoples past, present and future (figure 1a, electronic
supplementary material, tables S3 and S4).

2.3. Analyses of Batrachochytrium dendrobatidis detection, prevalence and load over space and
time

We tested for a spatio-temporal pattern of Bd detections in museum and field samples using a
generalized additive model (GAM; [41]). For the GAM, we grouped samples by HUC-12 and capture
year, and filtered the data to only Bd-positive samples. To account for uneven sample sizes across
space and time (e.g. no samples collected from southern localities after extirpations in the 1970s), we
included total samples (Bd+ and Bd−, n = 2074 after filtering recaptures) at each HUC-12 and capture
year combination as a fixed effect. We applied a thin plate spline smoothing function to capture year
[42]. The GAM was run with the following formula: latitude∼total samples + smoothed capture year.

To identify geographical clusters of Bd infection risk, we used circular spatial scan statistics
implemented in SaTScan [43,44]. SaTScan identifies geographical clusters of cases (infections) by
calculating relative risk (RR) based on the incidence of infections inside versus outside circular
windows. Window size is selected using maximum likelihood, and clusters are designated high or
low rate based on RR values (RR > 1 indicating more infections than expected in high-rate clusters,
RR < 1 indicating fewer infections than expected in low-rate clusters). We performed separate SaTScan
analyses for museum versus field samples. For both we applied SaTScan’s Bernoulli model to Bd
status (Bd±; [44]). We aggregated Bd detection data at the HUC-12 level to improve cluster detection
power in areas with fewer samples [45]), and set maximum window radius to 50 km (the approximate
mean HUC-12 size in California). We used minimum high-rate cluster case thresholds of n = 3 for
museum samples and n = 10 for field samples to balance different limitations on detection in formalin-
fixed versus field-collected samples with achieving sufficient statistical power in the models (electronic
supplementary material, table S5). For cluster selection, we used the following SaTScan settings:
Monte Carlo with 999 replications, adjustment for more likely clusters, 10 iterations and alpha = 0.05.
We used SaTScan cluster ID and cluster rate (high versus low) in models described below.

2.4. Evaluation of Batrachochytrium dendrobatidis’s relationships with environmental and host-
associated factors

We used generalized linear mixed models (GLMMs) in glmmTMB [46]) to analyze the effects of abiotic
and biotic factors on three response variables: Bd detection (Bd+/Bd-) in (i) museum and (ii) field
samples, and (iii) infection load (Bd internal transcribed sequence (ITS) copies) in field samples. We
first constructed intercept-only models for each of the three response variables with/without random
effects of SaTScan cluster ID and cluster rate (0 = not in a cluster, 1 = low-rate cluster, 2 = high-rate
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cluster). We then selected the best intercept-only model as a base for model building with additional

covariates.
We used public databases to compile 85 potentially relevant environmental covariates at the HUC-12

level including hydroclimatic and geographical factors. To identify redundant covariates, we calculated
Pearson’s r for every pair of variables; we selected a single variable from pairs with r≥ 0.7 (electronic
supplementary material, tables S6 and S7, and methods).

For the analysis of Bd detection in museum samples, we included only day length, the 24-month
standardized precipitation evapotranspiration index (SPEI; a measure of prolonged drought in which
negative values indicate more extreme drought and positive values indicate wetter years; hereafter
referred to as ‘aridity’), latitude, and decade as covariates; we did not include other covariates as
these are based on contemporary measurements and do not reflect the time period of museum
collections. We explored season and aridity as interactions with decade, as these factors could not
have affected Bd status prior to the earliest Bd detections. We also included interactions with latitude
to evaluate how drivers of infection vary in strength regionally.

For the analyses of Bd detection and Bd load in field samples, we first selected the most informative
set of non-redundant environmental covariates using a boosted regression tree (BRT) analysis using
xgboost in R (v. 3.6.2; [41,47,48]). BRT is well-suited for large complex ecological data as it does not
assume normality or linearity; it ignores non-informative predictors and is typically unaffected by
outliers; and it can accept numeric, categorical, or binary data [49,50]. Seven covariates surpassed a
BRT threshold of approximately 5% relative importance: Tmax, latitude, day length, % agriculture on
hydric soil, % wetlands remaining, aridity and elevation (electronic supplementary material, figure
S1). These covariates were included in the two field sample models.

While spatial and/or temporal variation in environmental covariates are likely, capture year was
highly confounded with location in field samples. Therefore, we included interactions between
environmental covariates and latitude but not year in the field sample models. We included SVL in
the Bd load model based on previously demonstrated relationships [51]. We used log10-transformed
ITS values for Bd load model analyses.

All covariates were centred and scaled for model building. Alternative models were constructed for
each response variable with and without interactions. We used Akaike information criterion (AIC) to
select the best model for each response variable.
3. Results
3.1. Spatial and temporal distribution of Batrachochytrium dendrobatidis detections
Sampling was geographically and temporally uneven. Museum specimens made up the majority of
South Coast and Southern Sierra samples. Field samples from North Coast and Central Coast clades
were concentrated in watersheds that were the focus of research projects or have frog population
monitoring programmes stipulated in dam operating licenses (electronic supplementary material, table
S3 and figure S2).

We detected a northward spread in Bd detections through time, indicated by a positive curvilinear
relationship between year and latitude of Bd detections. Beginning in 2005 when field sampling
began, the relationship between year and latitude flattened (GAM, t = 4.037, p < 0.0001, adjusted R2 =
0.133, deviance explained = 14.4%; figure 1b; electronic supplementary material, figure S3). Bd+ frogs
were first detected in 1940 in the Southern California Transverse Range (South Coast clade); in 1966 in
the Coast Range (Central Coast), 1972 in the Central California Foothills and Coastal Mountains
(Southern Sierra), and 1973 in the Sierra Nevada (Northern Sierra). The earliest North Coast
detections were 1989 in the Coast Range (Russian River), 2005 in the Klamath Mountains, and 2016 in
the Cascade Mountains.

Bd+ individuals occurred throughout the geographical range sampled, with overall prevalence of
8.5% (6.1–11.4% Clopper–Pearson CI) in museum samples and 36.6% (34.2–41.3%) in post-
metamorphic field samples. Once detected in 1940, prevalence increased from 2.1% (CI: 0.78–4.6%,
n = 282) in 1940–1969 to 56.3% (29.9–80.2%, n = 16) in 1970–1979. Prevalence dropped from 1980 to
2005 but remained moderately high at 28.6% (CI: 19.2–39.5%, n = 84; figure 2a).

Bd prevalence in field-sampled R. boylii exhibited a seasonal cycle mirroring Mediterranean climate
precipitation patterns. Bd prevalence was consistently lower from May to September relative to other
months with the exception of October, a dry month with high prevalence (67.4%, CI: 60.3–73.9%;
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Figure 2. Batrachochytrium dendrobatidis infection prevalence (per cent of individuals infected) in foothill yellow-legged frogs (Rana
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figure 2b). The dry season (May–October) comprised 90% of field samples (n = 1451/1612). Median Bd
loads did not significantly vary across years, but were orders of magnitude higher among frogs
caught in the transition months between the wet and dry seasons: April (1.2 × 105 ITS copies), October
(2.1 × 105) and November (2.2 × 105) versus all other months (7.7 × 102–7.4 × 103; electronic
supplementary material, figure S4).

3.2. Spatial clustering of Batrachochytrium dendrobatidis infection risk through time
Using SaTScan applied to museum samples, we detected three historical high-rate geographical clusters
(n = 11–17 individuals) spanning four clades: San Gabriel River (sample range 1961–1970, Bd+ samples
detected in 1970; South Coast clade), San Francisco Bay Area (1966–1994, Bd+ 1986–1994; Central
Coast), and Yuba and Feather Rivers (1952–1998, Bd+ 1973–2005; Northern Sierra and Feather;
figure 3a, electronic supplementary material, figure S5a, electronic supplementary material, table S5).

In our SaTScan analysis of field samples, we detected five contemporary high-rate clusters (n = 17–
471): San Carpoforo Creek (2021; South Coast), Alameda and Coyote Creeks (2013–2020, Bd+ in



34

0 50 100 150 200 km

N

–120

1

2

3 5

7

6

4

3

2

1

–120

36

38

40

42

34

36

38

40

42

historical clusters(a) contemporary clusters
Bd risk

high

low

(b)

Figure 3. SaTScan clusters of significant relative risk of Bd infection in Rana boylii. Samples were aggregated at sub-watershed
(HUC-12) level. Historical clusters (a) are based on museum samples (collected 1897–2005); contemporary clusters (b) are
based on field samples (2005–2021). Clusters are shown as large circles, with coloured dots at the centre of sub-watersheds
included within a cluster, and small grey dots depicting underlying distribution of aggregated samples. High Bd risk (high-rate)
clusters are shown in red (historical clusters 1–3, contemporary clusters 1, 3–6); low Bd risk (low-rate) clusters are shown in
blue (contemporary clusters 2, 7). High-rate clusters are defined as areas with significantly higher relative risk than expected
(RR > 1), while low-rate clusters have significantly lower relative risk than expected (RR < 1).

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.11:231270
7

2013–2020; Central Coast), Bear River (2016; Northern Sierra), Yuba and Feather watersheds (2005–2020,
Bd+ in 2016–2020; Northern Sierra and Feather), and Redwood Creek (2013–2015, Bd+ in 2014–2015;
North Coast); and two low-rate clusters: San Benito watershed (2006–2019, Bd+ in 2006;
Central Coast) and Applegate River (2005, North Coast; figure 3b, electronic supplementary material,
figure S5b, electronic supplementary material, table S5).

3.3. Batrachochytrium dendrobatidis infections across sex, life stage and clade
Bd prevalence was higher in field-sampled males (45.9%, CI: 41.0–50.8%) than in females (35.6%, 30.9–
40.5%), but median Bd loads were similar between sexes (2.6 × 103 ITS copies in males versus 2.3 × 103 in
females; electronic supplementary material, figure S6). Bd prevalence among tadpoles was 3.9%
(1.0–9.7%). While juveniles (40.0%, CI: 35.8–44.3%) exhibited similar prevalence as adults (43.6%, 39.6–
47.7%), median Bd loads were higher in juveniles (9.6 × 104 ITS copies versus 4.5 × 103 in adults;
electronic supplementary material, figure S6). Bd+ and Bd- frogs did not differ in SVL or weight
(electronic supplementary material, figure S7).

Prevalence also varied by clade. Amongmuseum samples, Bd prevalence did not exceed 20% except in
Northern Sierra and Feather clades across all decades. Bd prevalence among field-sampled post-
metamorphic frogs was moderately high in the South Coast clade (approx. 65%) and northern and
central clades (Central Coast, North Coast, Northern Sierra and Feather; 35–56%), but relatively low in
the Southern Sierra (14%; electronic supplementary material, figure S8a and table S3). Bd loads in field
samples were higher in the Central Coast (1.5 × 105 median ITS copies) and Northern Sierra (1.1 × 105)
relative to remaining clades (9.0 × 102–4.2 × 103; electronic supplementarymaterial, figure S8b and table S3).

3.4. Abiotic correlates of Batrachochytrium dendrobatidis infections
The best-fit GLMM for museum sample Bd detections included cluster rate as a random intercept; decade
as a continuous fixed effect; and one-way interactions between decade and three environmental
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predictors: day length, aridity and latitude (electronic supplementary material, table S8). Decade was the
only significant predictor of Bd detection probability, with a stronger positive relationship between Bd
detection probability and time in high-rate clusters relative to samples outside of clusters (decade
conditional estimate = 1.54, p < 0.0001; electronic supplementary material, figure S9).

The best GLMM for field sample Bd detections included cluster ID and cluster rate as random intercepts;
all variables selected by BRT analysis (elevation, day length, latitude, Tmax, aridity, % agriculture on hydric
soils and % wetlands remaining) as fixed effects; and interactions between latitude and two climatic
predictors, Tmax and aridity (electronic supplementary material, table S9). Bd detection probability
increased with shorter day length (conditional estimate =−0.16, p < 0.05), lower Tmax (i.e, cooler
temperatures; conditional estimate =−0.62, p < 0.0001) and lower aridity (higher values of SPEI index);
conditional estimate = 0.21, p < 0.01). The effects of day length, Tmax and aridity on Bd detection
probability were marginally stronger in high-rate clusters (figure 4a,b, electronic supplementary material,
figure S10). Relationships between Bd detection probability and Tmax varied across latitude (latitude–Tmax

interaction: conditional estimate = 0.36, p < 0.0001). The aridity index showed opposite relationships with
observed Bd prevalence in Coastal and Sierran clades: in Coastal clades the relationship was negative (i.e.
higher Bd prevalence during prolonged droughts; simple linear regression (SLR), t =−10.05, p < 0.01,
R2 = 0.06), while in Sierran clades it was positive (higher Bd prevalence outside of droughts; SLR, t = 12.2,
p < 0.05, R2 = 0.06; figure 4c,d). Observed Bd prevalence showed a significant negative relationship with
Tmax in Coastal clades only (SLR, t =−4.15, p < 0.001, R2= 0.23; figure 4e,f).

The best model for field sample Bd load included cluster ID as a random intercept; Tmax, day length,
aridity, % agriculture on hydric soils, % wetlands remaining, latitude, elevation and SVL as fixed effects;
and no interactions between latitude and other predictors (electronic supplementary material, table S10).
Higher Bd loads were associated with lower aridity (conditional estimate = 0.51, p < 0.01), smaller SVL
(conditional estimate =−0.85, p < 0.0001), and lower Tmax (conditional estimate =−0.35, p < 0.05).
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Observed Bd load only showed this inverse relationship with aridity in Sierran clades as evidenced by a
positive relationship with the SPEI index (SLR, t = 2.2, p < 0.05, R2 = 0.04), and showed negative
relationships with SVL and Tmax in Coastal clades (SVL, t =−9.72, p < 0.0001, R2 =0.20; Tmax, t =−3.84,
p < 0.001, R2 =0.04; figure 5).

4. Discussion
4.1. Spatio-temporal patterns in Batrachochytrium dendrobatidis infections
We analysed spatio-temporal patterns in Bd detections in R. boylii using a compiled dataset comprising
over 2000 samples spanning 124 years. Our analyses revealed several notable patterns. First, the 39 Bd+
museum specimens coupled with the earliest Bd detections from the field show a south-to-north
progression of detections until 2005 when field swabbing began. Second, Bd prevalence increased
through the decades, but the trajectory and timing of peak prevalence varied among climate zones.
Among extant populations, those from the most xeric region, California’s Central Coast (Central Coast
and South Coast clades) had the highest Bd prevalence and infection loads; this region also had some
of the earliest Bd detections historically. Third, observed Bd infections varied by frog sex and life
stage: Bd prevalence was higher in adult males than females, while loads were highest in juveniles in
autumn (primarily from the Central Coast clade). Lastly, we found a strong influence of
Mediterranean climate seasonality, whereby both prevalence and loads were lowest during warm and
dry summer months. Below we discuss potential implications of these findings, limitations of our
analyses and suggestions for future work.

4.2. Batrachochytrium dendrobatidis dispersal across the US west coast
The earliest Bd detections in R. boylii across California and Oregon exhibited a pattern of northward
spread corroborated by three historical high-rate clusters: a South Coast cluster in the 1960s–1970s
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(San Gabriel watershed), a Central Coast cluster in the 1960s–1980s (San Francisco Bay Area watersheds),

and a Northern Sierra/Feather River cluster from the 1970s to 2000s (Yuba and Feather watersheds,
Sacramento River drainage). Bd prevalence also increased across the decades, rising from less than 5%
between 1890 and 1969 to greater than 50% by the 1970s, and staying moderately high (approx. 30%)
until the 2000s. Moreover, decade was the only significant predictor of Bd prevalence in museum
samples. Taken together, our results suggest that Bd infections in R. boylii coincided with historical
declines in the South Coast of California before spreading northward across California and Oregon
during the middle of the twentieth century. These findings are consistent with previous multi-species
museum studies reporting that Bd spread in a wave-like pattern across Central and South America
[52–54] and northward in southern California [24,55], and that Bd prevalence increased in California
in the 1960s–1970s [12,56,57].

Though our results may suggest directional spread of Bd in R. boylii, the ‘Bd wave hypothesis’ may
not fully explain the history of chytridiomycosis in our sampling area and neighbouring regions.
Previous retrospective studies detected Bd in museum specimens collected decades before reports of
chytridiomycosis-associated declines from Baja California, Mexico (1894; [58]), southern California
(1915; [23]) and Costa Rica (1964; [57]). Additional evidence suggests that Bd may have been
introduced multiple times in California [59] and may have spread from human population centres
including the San Francisco Bay Area [40] and the Los Angeles Basin [23]. Time-dated phylogenetic
analyses also suggest that Bd may have been present in California for approximately 500–1,400 years
before present; however, rapid evolution at high elevation sites may influence these estimates [60].

4.3. Batrachochytrium dendrobatidis prevalence and load depends on sex and life stage
Behaviour and phenology may explain infection differences among sexes and life stages. Higher
prevalence in males may be due to congregating at lek (group breeding) sites and territorial wrestling
[61,62] that could increase Bd transmission, as well as reproductive endocrines and stress hormones
that can mediate immune function variation among sexes [63–65]. Substantial time spent calling
underwater [66] could also increase Bd growth on males, as the fungus is aquatic and psychrophilic
(cold-preferring). Water temperatures when R. boylii breed are typically cool, averaging 10–12°C
[67,68]. Whether males experience increased negative effects of infections is unknown, but in four
other California and Oregon ranids, males exhibit greater Bd-associated mortality than females [69].
The observation that juvenile R. boylii had the highest pathogen loads may be attributed to the fact
that life stage and season are inextricably coupled. Young of the year are abundant in cooler late
summer and autumn months when environmental temperatures are similar to the thermal growth
optimum for Bd [31,32,70–72].

4.4. A Batrachochytrium dendrobatidis hotspot in California’s Central Coast
Two Central Coast watersheds, Alameda and Coyote Creeks, grouped into a high-rate cluster and exhibited
the highest Bd loads. Bd sampling at these sites was triggered by observations of sick and dying frogs in
autumn; thus these are not random samples. Nonetheless, factors specific to these watersheds may
contribute to greater chytridiomycosis mortality, such as intermittent surface flow during dry seasons
that crowds frogs at remnant pools and promotes Bd transmission; frequent human visitation facilitating
transmission of multiple Bd strains; and the presence of non-native reservoir/amplification hosts
(bullfrogs and crayfish; [24,25,73]). Moreover, the Central Coast clade has especially low genetic
diversity [35], which may increase chytridiomycosis susceptibility [74,75].

4.5. Do season, temperature and hydrologic conditions drive Batrachochytrium dendrobatidis
infections?

Shorter day length and lower monthly maximum temperatures were associated with higher Bd infection
probability and loads. Our models also indicated Bd infections were associated with successive wet
years, but the influence of temperature and aridity varied significantly among clades and latitudes.
Moreover, Tmax and aridity serve as reasonable proxies for water temperature and stream-flow, but
have limitations. Air and water temperatures in rivers are highly correlated [76], but can be decoupled
by factors including stream-bed geomorphology, canopy cover and hypolimnetic releases from
upstream impoundments [77–80]. Stream-flows should decrease during droughts, but can be



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.11:231270
11
maintained by dam releases [20], intensified by water abstraction [81] and vary with hillslope water

storage capacity [82]. Given the significant site-to-site variation in these factors affecting water
temperature and stream-flow that could mask the associations of Bd with Tmax and aridity, we
interpret the overall relationships as being valid but requiring consideration of local context.

Increasing Bd infections and loads with decreasing temperatures and greater stream-flow is consistent
with previous reports of seasonal and latitudinal influences on Bd infection in North America (e.g. [83])
and Bd’s low thermal preferences [84]. Yet, the effects of temperature and aridity were region-dependent.
Snowmelt-driven Sierran watersheds exhibited higher Bd prevalence in 2017–2018 when precipitation
was higher, whereas prevalence was higher in rain-fed coastal watersheds during prolonged drought.
Coastal samples were collected during more extreme drought conditions (SPEI <−2) compared with
Sierran watersheds (min SPEI =−1), when frogs concentrate in shrinking pools during the cool dry
autumn, probably increasing Bd transmission [24,25]. Extreme drought is expected to intensify with
climate change across R. boylii’s range [85].

4.6. Persisting with a deadly pathogen
The range-wide ubiquity of Bd we document here and episodes of chytridiomycosis related die-offs in
Central Coast populations [25] raise questions about whether the persistence of robust R. boylii
populations on the North Coast of California and almost complete extirpation from xeric regions of
the South Sierra and South Coast are attributed to differences in Bd susceptibility and/or
environmental drivers. Mechanisms associated with variation in Bd susceptibility on the individual
level include host genetics; innate, acquired or trans-generational ability to clear infections; anti-Bd
function of skin secretions and/or microbiome; and microclimate [74,75,86–88]. Antimicrobial skin
peptides (AMPs) have been characterized in R. boylii [89,90], but the relationships between AMPs and
Bd infection remain to be explored in this species. Cases among the set of recaptured frogs in which
infection had cleared (n = 18) or load was substantially reduced (n = 9) upon recapture 1–3 years later
could be due to any of the mechanisms listed above.

Behaviour and environmental conditions probably also play roles in the ability to clear Bd infections.
Rana boylii is known to bask on river banks and emergent rocks in the stream channel [26,91]. Short-term
elevated temperature treatments that mimic basking can inhibit Bd growth [92,93]. Warm and
precipitation-free summers with long days provide ample basking opportunities across R. boylii’s
range, potentially explaining the low summer Bd prevalence that we observed. In autumn, less
sunlight reaches canyon-bound streams, resulting in more limited basking opportunities [94,95], which
may contribute to increased Bd prevalence in October. Basking opportunities are also dependent on
microclimatic conditions, which are mediated by riparian vegetative cover and by flow regulation.
Flood suppression by upstream dams allows encroachment of trees into stream channels, whereas
wildfire can open the canopy. The Feather River watershed is characterized by a unique combination
of dammed and free-flowing streams with frogs present in an area that has experienced intense
wildfires [96]. Rana boylii is designated as threatened under the US Endangered Species Act [36] in the
Feather watershed, and frogs occur at low population densities relative to other regions [97]. Ongoing
population monitoring in this region will provide important insights into the relationships between
Bd, flow regulation and canopy cover.

On the population level, persistence of R. boylii may be attributed to demographic resilience.
Population growth rates of R. boylii positively correlate with summer stream temperature and are
greater following wet years with high total annual volume of stream-flow [97]. The longevity (greater
than 10 years) and fecundity of some individuals [30,98], should allow populations to rebound from
disease-related losses when instream conditions are favourable for recruitment. At the extreme, one
Bd+ female swabbed in 2016 in the Pit River of northern California was recaptured in 2021
(K Breedveld 2021, personal observation).

4.7. Limitations and future work
We note some potential limitations of our study. Bd infections increased over time, but lower Bd
prevalence in older museum samples may in part be attributed to lower detection probability. DNA-
damaging formalin fixation compounded with degradation over time can limit DNA amplification,
reducing qPCR detection probability relative to more recently preserved specimens and field-collected
swabs [99]. Thus, we cannot conclude definitively that prevalence was lower before 2005, or that the
oldest Bd− museum samples truly indicate Bd’s absence at a given location. Nonetheless, our samples
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were collected in similar time periods and regions as multi-species retrospective studies in the region that

did detect Bd, and our sample sizes from earlier decades in areas where Bd was not detected in R. boylii
are relatively robust. Thus, our detection data are likely to provide a reasonable estimate of Bd incidence
across R. boylii populations over the last century. Another complication in estimating true prevalence is
that Bd+ animals may have higher capture probabilities [69,100]; however this bias should be consistent
between museum and field samples. In addition, our samples were not a random sample over the annual
cycle of high and low flows in rivers that dictate frog activity: the majority of field samples in our dataset
were collected during the dry season (May–October), which is the most biologically active period for R.
boylii, when rivers can safely be waded and frogs can be encountered and caught.

We also note that SaTScan may not be optimal for river-dwelling organisms, as the linear distance-
based method may cluster populations not connected by waterways. Sample sizes were uneven across
regions and years, potentially causing some level of ascertainment bias; indeed, the contemporary
clusters we detected are areas with fairly high R. boylii abundance and robust monitoring. However, a
well-sampled and frog-abundant watershed (SF Eel River) was not part of a cluster due to a non-
significant calculated relative risk. Finally, Bd infections do not necessarily indicate susceptibility to
chytridiomycosis. For example, high pathogen loads can result from high vulnerability to Bd or high
tolerance, i.e. the ability to maintain infection while remaining healthy. Assessing susceptibility
requires coupling Bd assays with pathology, mortality/survivorship, or other disease indicators.

Our results suggest several avenues for future work to address Bd risk in R. boylii. Research that teases
apart relationships between Bd and summer conditions (i.e. warm temperatures associated with reduced
infections versus droughts associated with increased frog density and Bd transmission) will be especially
informative for conservation. For example, stream restoration projects that aim to connect aquatic habitats
could be designed to facilitate reduced disease transmission by considering frog density and thermal
conditions, and reintroductions of zoo-reared frogs could be performed at a time of year that minimizes
Bd infection risk. As cool temperatures predicted higher Bd infection probability, increased monitoring
effort in autumn and spring may improve detection of chytridiomycosis outbreaks. Additional research is
also needed to relate Bd-positivity to capture probability in this species, and to relate Bd loads to disease
susceptibility among populations, life stages and sexes. Given the dual needs for data on susceptibility
and minimizing impacts in remnant populations, we suggest expanding mark–recapture studies into
clades designated as ‘Endangered’ (South Coast and South Sierra) and combining these with non-lethal
tests of susceptibility such as immunocompetence assays [101], mucosal immunity assays [102],
characterization of the microbiome [103–105] and its relationships with temperature across environmental
contexts [106,107] and immunogenetics studies [74,75,108].

In addition, Bd genotype data in streams and rivers across California and Oregon are lacking. The
global panzootic lineage (Bd-GPL) has been the primary genotype detected in California [60,109–113].
However, Bd-Brazil was detected on three amphibians in Alameda and Santa Clara counties (C Briggs
2019, personal communication; Nayar 2019, unpublished data), where we observed the highest Bd
prevalence and loads in R. boylii. Virulence can significantly vary among Bd genotypes [114], and
plastic gene expression in Bd-GPL can alter virulence [115]. Indeed, Bd-GPL strains collected in
northern California exhibit wide variation in virulence [13]. Expanded knowledge of Bd genotype
distribution may shed light on the regional differences we observed, and direct future evaluation of
Bd’s threat to R. boylii.

Addressing conservation challenges across large geographical scales requires extensive,
multidisciplinary collaboration, especially for aquatic species in arid regions where there are
competing demands for water and river flows are often over-allocated [116]. Environmental flow
frameworks designed to promote river health by allocating water for ecological purposes [117] would
be enhanced by incorporating information on disease. In California, dam operators that generate
hydroelectric power, irrigation districts that extract water for agriculture, and municipal utilities that
impound rivers to supply drinking water to cities all play important roles in the conservation of
riverine biota. There is a need for central reporting and collation of data collected by biologists across
sectors including resource agencies, utility companies operating in dammed rivers, and academic
scientists and community researchers working in undammed rivers to facilitate rapid knowledge
sharing and coordination of responses to disease outbreaks. We present our compilation and analysis
of diffuse data as a model for collaborative research on wide-ranging imperilled species.

Ethics. The project adhered to conditions of California Department of Fish and Wildlife Scientific Collecting Permits
#8820 (S.J.K.), #13674 (C.P.D.), S-190450003-20052-002 (I.D.R.), #10779 (B.J.H.), #06634 (K.D.W.), and Memoranda of
Understanding issued to A.J.A. and I.D.R. Samples included R. boylii skin swabs collected from the University of
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N3R94R, 10.21973/N3HT07).
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