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Phytoremediation is the use of green plants to clean 
up environmental contamination from a variety of 

sources (Cunningham and Berti 1993). It has been sug-
gested as a method for remediating metal contamination 
(Baker 1981, Chaney 1983), and numerous plants have 
since been identified as either tolerant to, or accumulators 
of various heavy metals, including lead (Huang and Cun-
ningham 1996, Vassil et al. 1998, Chin 2007), cadmium 
(Dhankher et al. 2003, Podar et al. 2004), and arsenic 
(Zhaol et al. 2002, Meharg 2003, Rathinasabapathi et al. 
2007).

Most phytoremediation studies to date have focused on 
the physiological mechanisms involved in the extraction, 
transport, and biomagnification or accumulation of metals 
in plants, primarily within a laboratory environment (Lasat 
2002, Hansen et al. 2005, Maestri et al. 2010) and often 
focus on known accumulators of metals. While the mecha-
nisms by which plants uptake and translocate metals are 
still being examined, identifying native species that thrive 
in contaminated soils as well as remove threats of metal 
exposure should be a primary objective. Approaching 
phytoremediation from both a theoretical perspective (i.e., 
which plants accumulate and how?) as well as an applied 
one (i.e., how effectively can phytoremediation be deployed 
at restoration sites?) leverages the potential two-fold benefit 
of both contamination removal and ecological restoration.

We took an exploratory approach to assess potential for 
three California native plant species to grow and accu-
mulate heavy metals on gold-mine waste-rock-tailings 
piles within the Sierra Nevada Gold Country at an aban-
doned gold extraction site. We also looked at the poten-
tial heavy metal extraction capacity of these species as 
a phytoremediation- feasibility assessment for potential 
implementation as part of a broader clean-up effort.

We established open-air growth containers with plastic 
basins to hold all plants at the Providence Mine in Nevada 
City, California. The site was one of the richest mines 
during the California gold rush, and mining activities have 
left a legacy of heavy metal contamination. Preliminary soil 
sampling found elevated concentrations of arsenic (As), 
cadmium (Cd), and lead (Pb) with mean concentrations 
of 68.41 mg/kg As, 5.8 mg/kg Cd, and 240.77 mg/kg Pb. 
Soil screening levels (SSLs)—regulatory limits at time of 
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site assessment—for each of these contaminants vary by 
location and sampling time, with recent California SSLs 
for each of the above metals being 0.07 mg/kg As, 1.7 mg/
kg Cd, and 80.0 mg/kg Pb (CalEPA 2010). This restoration 
note focuses primarily on Cd due to significant uptake 
of Cd across sampled species as well as discovery of a 
previously unreported Cd accumulator.

Candidate species for this study were chosen following a 
previously conducted field-based-pilot feasibility analysis 
using a large selection of species (Lauder 2013). Species 
chosen for that pilot were selected based on their presence 
in the exhaustive PhytoRem phytoremediation literature 
database (McIntyre et al. 2003), as well as being described 
as locally native, and augmented with species yet untested 
in terms of metal tolerance. Pilot study results led to the 
selection of Festuca rubra (red fescue) and Helianthus 
annuus (sunflower) as candidates for controlled pot studies 
due to their nativity and demonstrated uptake capacity as 
well as biomass production (Lauder 2013). Stipa pulchra 
(= Nassella pulchra [purple needlegrass]) was added to the 
potted plant study due to its growth form, nativity, seed 
availability, and as an exploratory species that has not yet 
been tested for heavy metal uptake or tolerance. All three 
species were also selected due to their presence in commer-
cially available hydro-seed mixtures which may be applied 
as part of larger, engineering-based clean-up efforts.

We planted candidates in equal amounts of contami-
nated homogenized soil taken directly from the mine 
tailings. All plants were direct-sown to simulate broadcast 
seeding similar to hydro-seed application. Each species 
was planted in triplicate with each replicate using the 
same amount of seed by weight (1.5 ounces [42 g] for both 
grasses and eight seeds per pot for H. annuus). Three one-
gallon (5.7 l) pots of each plant contained no amendments, 
and three pots containing each species were amended with 
nitrate-rich compost (n = 3 per plant per treatment), due 
to previous findings of differences in biomass and shoot 
production in compost-amended plots (Lauder 2013). No 
plants were grown in control soil because the main question 
of this project was related to variation between species and 
potential germination for restoration, not whether growth 
is greater in contaminated or control soil. We watered 
plants daily with equal amounts of water until germination 
and every other day following germination. Plants were 
grown on-site to test growth under natural conditions. 
They were covered loosely with plastic during periods of 
rain to maintain a controlled watering regime and shade 
cloth during hot weather to prevent sun-scald. Potted 
plants were harvested approximately ten weeks after plant-
ing. We extracted all biomass, with roots and shoots intact, 
by gently removing plants from the potting soil, rinsing in 
tap water and de-ionized water, and then laying them on 
paper towels to air dry. Pre-planting soil metal concentra-
tions and post-planting plant shoot metal uptake were mea-
sured using inductively coupled plasma-atomic emission 

Figure 1. Mean log-transformed biomass produc-
tion (A) and root growth (B) by species and amend-
ment in Helianthus annuus, Stipa pulchra, and Festuca 
rubra planted in metal-contaminated soils. Light grey 
bars represent compost-amended soils, and dark grey 
bars represent non-amended soils. Different lower-case 
letters represent significant differences between spe-
cies (ANOVA p < 0.05). Error bars represent standard 
error about the mean.

spectrometry (ICP-AES) at Excel-Chem laboratories in 
Rocklin, CA.

We used mixed effects analysis of variance (ANOVA) 
to evaluate between-species variation in biomass produc-
tion, root growth, shoot growth, and total Cd uptake. All 
variables were examined for normality, and biomass and 
root growth were log (x + 1)-transformed for final analy-
sis. All models included pre-planting Cd, As, and Pb soil 
concentrations as covariates due to lack of any collinearity. 
Pre-planting soil pH was removed from further analysis 
due to a lack of significant variation between pots (ANOVA 
F3,6 = 0.18, p = 0.90). Step-wise model reduction was 
performed using Akaike’s Information Criteria (AIC) for 
variable reduction (pH, soil metal concentrations, amend-
ment type, and plant species) and final model selection.

Biomass production differed by species when account-
ing for pre-planting metal concentrations (F5,12 = 21.54, p 
< 0.001), with S. pulchra (x̅ = 2.33 g) producing significantly 
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more biomass than H. annuus (x̅ = 0.67 g), and F. rubra 
(x̅ = 9.67 g) producing significantly more biomass than 
S. pulchra (Figure 1A). The species × amendment interac-
tion was not significant at α = 0.05, but compost did appear 
to slightly decrease biomass production in the two greatest 
biomass-producing species (F. rubra and S. pulchra).

Root length differed by species when accounting for 
pre-planting metal concentrations (F6,11 = 6.65, p < 0.01), 
with both S. pulchra and F. rubra producing significantly 
longer roots (x̅ = 13.2 cm and 11.79 cm, respectively) than 
H. annuus (x̅ = 3.88 cm, Figure 1B). There was no signifi-
cant species × amendment interaction observed in root 
length. Shoot length did not significantly differ by species 
but did differ by amendment (F12,5 = 17.269, p < 0.01). 
Composted H. annuus and F. rubra grew shoots more than 
10 cm longer than non-amended plants.

Cadmium uptake was significantly greater in F. rubra 
(x̅ = 7.25 mg/kg) than either S. pulchra (x̅ = 4.3 mg/kg) 
or H. annuus (x̅ = 3.75 mg/kg; Figure 2) while controlling 
for pre-planting metal concentrations (F10,7 = 6.543, p 
< 0.05), and composted pots showed significantly greater 
Cd uptake than non-amended pots in both F. rubra (x̅ = 
8.2 mg/kg versus 6.3 mg/kg) and S. pulchra (x̅ = 4.97 mg/
kg versus 3.63 mg/kg).

The observed decreased biomass production in both 
grass species in amended pots was unexpected. It was 
consistent, however, with observations made by Leavitt et 
al. (2000), who reported significantly reduced grass cover 
on mine waste amended with fertilizer when compared to 

unamended mine waste. It is unknown if the likely cause 
of the observed decrease in biomass is due to application 
rates causing a spike in soil acidity. Increased uptake is 
consistent, however, with recent work that shows increased 
Cd mobility when N-rich fertilizer is applied and pH 
is reduced (Zhou et al. 2015). These results show that 
soils do not need to be amended to produce significant 
growth and slope stabilization, but should be considered 
if phytoextraction is a goal.

Strong root growth is a key component in angle of repose 
mine waste revegetation (Leavitt et al. 2000), as roots sup-
port erosion control. Festuca rubra produced significantly 
higher biomass than the other tested species, and is a clear 
choice for early establishment of native plants in the area. 
The growth form of S. pulchra (a bunchgrass), combined 
with its nativity should be considered in any waste restora-
tion efforts focusing on ecological restoration objectives, 
such as restoring plant diversity. Helianthus annuus has 
been shown to exhibit allelopathy toward weedy broad-
leaved invasive species such as Brassica sp., and in general 
has been shown to inhibit invasive weed cover following 
multiple growing seasons (Leather 1983). Thus, a combina-
tion of all three species used in this study, as well as other 
native species such as nitrogen-fixing legumes, would 
provide the most comprehensive re-vegetation plan for 
mine waste restoration. Festuca rubra and S. pulchra also 
have the benefit of being readily available in hydro-seed 
mixtures, allowing for cost-effective application during 
reclamation efforts.

Hyperaccumulation (extreme accumulation of metals 
relative to that of surrounding species) or accumulation of 
Pb and Cd have been previously reported in both H. annuus 
(Adesodun et al. 2010) and F. rubra (Vangronsveld et al. 
2009), but no previous known work has demonstrated 
significant uptake of Cd in S. pulchra under ambient field 
conditions. Results from this experiment show that all 
three species, F. rubra, S. pulchra, and H. annuus are viable 
revegetation options for derelict mine sites, particularly 
when erosion potential and habitat restoration are primary 
goals. The added benefit of uptake can also be considered 
if long-term harvest plans are considered. However, the 
lack of hyperaccumulation in these plants makes simple 
non-harvest, vegetative succession plans viable, as small 
amounts of uptake can still limit dust exposure and erosion 
into waterways, while not providing a significant threat of 
bioaccumulation.
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Figure 2. Mean cadmium (Cd) uptake by species and 
amendment in Helianthus annuus, Stipa pulchra, and 
Festuca rubra planted in metal-contaminated soils. 
Light grey bars represent compost-amended soils, and 
dark grey bars represent non-amended soils. Error bars 
represent standard error about the mean. Different 
letters above error bars represent significant within-
species, between-amendment differences (ANOVA 
p < 0.05). Letters above horizontal bars represent 
between-species differences.
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Tropical alpine ecosystems, regionally known as “pára-
mos”, are key to healthy socio-environments in the 

Andean region because of the environmental services 
they provide. Rivers and streams originating in these eco-
systems supply water to most Andean cities, agricultural 
activities, and hydropower generation. Ranging from 
the border of the tree line to the permanent snow line, 
these ecosystems develop in valleys and plains of glacial 
origin and include small lakes, peat bogs, wet grasslands, 
shrublands, and dispersed short-height forest patches 
(Buytaert et al. 2006). At sites with low disturbances, soil 
organic matter (SOM) content is high, commonly above 
40% (Buytaert et al. 2005). In addition, they are important 
biodiversity hotspots due to the high level of endemism of 
species adapted to this unique environment.

The ecological functions of tropical alpine ecosystems 
are threatened by increasing pressures due to climate 
change, agriculture, mining, and forestry. Furthermore, 
scientific knowledge of these ecosystems is low relative 
to other tropical ecosystems. Therefore, conservation and 
restoration of degraded portions of these ecosystems is 
critical. A common management practice to enhance res-
toration in these ecosystems is the removal of stressors 
through land purchase and posterior designation as con-
servation sites. However, how the removal of disturbances 
in tropical alpine wetlands improve ecosystem functions 
and services is poorly reported in scientific literature, 
preventing the overall evaluation of this practice and the 
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